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Abstract

This paper describes Rocketeer Voyager, a versatile 3-D scientific visualization
tool which processes in parallel a series of HDF output dumps from a large scale
simulation. Rocketeer reads data defined on many types of grids and displays
translucent surfaces and isosurfaces, vectors as glyphs, surface and 3-D meshes,
etc. An interactive version is first used to view a few snapshots, orient the
image, and save a set of graphical operations that will be applied by the batch
tool to the entire set of snapshots. The snapshots may reside on separate or
shared file systems. Voyager broadcasts the list of operations, reads the data
ranges from all snapshots to determine the color scales, and then processes the
snapshots concurrently to produce hundreds of frames for animation in little
more time than it would take for the interactive tool to display a single image.

Rocketeer is based on the Visualization Toolkit, which uses OpenGL to
exploit hardware graphics acceleration. On a linux cluster the nodes may have
different graphics hardware or none at all. To circumvent this difficulty and to
eliminate some defects in images rendered using Mesa, a free implementation of
OpenGL, CSAR contracted with Xi Graphics, Inc. to develop an efficient and
flawless X-server that runs in a "virtual frame buffer" and installs on all nodes in
the cluster with little administrator intervention. Because the most time-
consuming operation is reading the data files, the total time for generating an
individual image is not much longer than it is on the fastest graphics
workstations, despite the fact that the virtual frame buffer does not take
advantage of graphics hardware acceleration.



1. Introduction

Rocketeer [1] is a powerful interactive 3-D scientific visualization tool
developed at the University of Illinois Center for Simulation of Advanced
Rockets (CSAR; [2] ) by John Norris and Robert Fiedler. Research performed
at CSAR involves large coupled multiphysics simulations of solid propellant
rockets, as well as a wide variety of detailed subscale simulations, including
burning heterogeneous propellants, pressure-driven crack propagation in various
materials, turbulent fluid flows with burning aluminum droplets and smoke
particles, etc.

Large simulations at CSAR involve the numerical solution of the time-
dependent coupled partial differential equations (PDEs) describing a physical
system, such as the Space Shuttle booster. The values of the dependent
variables representing various physical quantities (e.g., the gas density, velocity,
and pressure, and the material displacements and deformation velocities) are
determined at sets of points comprising 3-D spatial meshes, and the time
evolution of the system is computed by using the PDEs to estimate the solution
at the next time level. Typically 10,000 to 100,000 time steps are required to
reach a physical time of interest (for rockets, from ignition to steady burn or to
propellant burn out).

During a simulation, snapshots of the solution are written to disk at a
number (typically hundreds) of equally spaced physical problem time levels.
Insight into the behavior of the system can be gained by visualizing the
individual snapshots and by displaying a series of snapshots in a scientific
animation. Rocketeer can be used to view the snapshots individually and to
apply a specified set of graphics operations to an entire series of snapshots to
produce a series of frames for animation. Subsequently, these frames may be
converted into a GIF animation file, for example, using free software such as
ImageMagick [3].

Many simulations are made parallel using domain decomposition
(partitioning the 3-D meshes so that each processor works on a different portion
of the entire mesh). On distributed memory systems such as linux clusters, the
MPI library [4] is commonly used to pass data explicitly between processors
when necessary. Parallel simulation codes typically have multiblock grids, with
one or more mesh blocks per processor. The most straightforward method for
such a parallel application to save a snapshot is to have each processor write its
data to a separate file, although in a large simulation hundreds of thousands of
files could be produced. With a bit more coding effort, the same data could be
combined into a single multiblock file.

Rocketeer is designed to read field data defined on structured or
unstructured single block or multiblock grids. It also can display data defined
on sets of points in space that do not constitute a grid. Rocketeer automatically
merges grid blocks to produce seamless images from multiblock data files.
Unstructured grids handled by Rocketeer may consist of tetrahedra, prisms,
pyramids, hexahedra, etc. Surface meshes composed of triangles, quadrilaterals,
etc., are also supported.

http://www.csar.uiuc.edu/F_software/rocketeer
http://www.csar.uiuc.edu/
http://www.imagemagick.org/
http://www-unix.mcs.anl.gov/mpi/index.html


Data files for Rocketeer are written using NCSA’s HDF (version 4)
library [5] for portability (compared to unformatted binary files) and
compactness (compared to text files). An important advantage of HDF files is
that their data is self describing, i.e., an application can easily read their data
without knowing beforehand exactly what arrays and what data types are stored
in the file. HDF allows the user to include additional information about the data
in the form of attributes. Rocketeer uses the values assigned to certain attributes
to identify the time levels, block names, mesh types, material types, coordinate
arrays, scalars and vector fields contained in the file. This helps make
Rocketeer an easy-to-use and convenient interactive tool.

Rocketeer is written in C++ and based on the Visualization Toolkit [6],
[7], which uses OpenGL to exploit hardware graphics acceleration. The user
interface employs wxWindows [8] for portability across platforms. Rocketeer
executables for linux, Sun Solaris 2.7, and Microsoft Windows can be
downloaded from the User’s Guide Web page [1].

To run Rocketeer, Unix-based systems must have OpenGL and the
GLX extensions to the X server installed (e.g., Mesa and Xfree86 for linux [9],
[10]). The graphics card should support color depths greater than 8 bits (256
colors).

Rocketeer can display field data using a variety of techniques,
including surface plots in which values of a scalar variable determine the color,
colored isosurfaces, and/or slices along the x, y, and/or z axes (see Figure 1).
Both 2-D surface and 3-D interior grids can be shown, with several choices
available for selecting a small portion of a 3-D mesh (for speed and clarity),
including specifying a bounding box, coordinates of points, or a range of indices
(see Figure 2). Clipping planes can be used to cut an image along the x, y,
and/or z axis, and the opacity of all objects can be varied to allow the user to see
more deeply into a 3-D data set. Multiple windows can be open on the screen at
the same time, and the camera position can be saved and loaded to assist the user
in comparing similar data sets.

Scalar and vector quantities can be depicted using glyphs (usually
spheres for scalars and oriented cones for vectors). The glyphs can represent
node- or element-centered data. They can be displayed at all or a small portion
of the points, with a choice of two sampling techniques: 1) random over the
indices or 2) closest to a set of uniformly distributed points. The sizes of the
glyphs can be uniform or they can vary with the value of some variable, such as
the radius of aluminum particles or the magnitude of the velocity vectors (see
Figure 3). For more details and examples, see the extensive on-line User’s
Guide [1].

http://hdf.ncsa.uiuc.edu/
http://www.kitware.com/
http://www.wxwindows.org/
http://www.csar.uiuc.edu/F_software/rocketeer
http://www.mesa3d.org/
http://www.xfre86.org/
http://www.csar.uiuc.edu/F_software/rocketeer


Figure 1: Rocfire [19] computation of the reaction rate for burning 3-D
heterogeneous propellant. On the propellant surface, white indicates
ammonium perchlorate oxidizer while pink indicates binder (fuel).
The reaction rate is indicated by a series of translucent isosurafaces,
ranging from low (blue) to high (green) that lie above the bumpy
propellant surface. The oxidizer can burn slowly on its own, but the
rate is highest near the boundaries between fuel and oxidizer.

http://www.csar.uiuc.edu/~tlj/rocfire.html


Figure 2: A portion of the interior mesh in a small cylindrical rocket [20]. The
black edges show elements of the mesh in the solid propellant, while
the red edges show mesh cells in the gas region inside the core of the
rocket. The pressure is indicated by a translucent surface (blue is a
slightly higher pressure than green). In this calculation, only the
surface nodes in the gas mesh were allowed to move as the propellant
deformed under pressures approaching 44 atmospheres. The
calculation was stopped when the mesh became too skewed to
maintain the accuracy of the solution.



Figure 3: Cutaway view of the gas velocity (cones) and propellant average stress
(colored surface) in a small cylindrical rocket [20] just after ignition.
Most of the gas moves toward the nozzle (to the lower right out of the
frame), but to the upper left (head end of the rocket) there is an empty
chamber into which some gas is also flowing. Velocities are indicated
by the color and orientation of the cones, with speeds ranging from
0.1 (blue) to 10 (red) meters per second. The gas consists of
combustion products originating at the propellant surface.

2. Parallel Visualization

Rocketeer Voyager is a fully featured MPI parallel batch mode version of
Rocketeer that shares its code base with the interactive version and is known to
run on linux and Solaris systems. The name Voyager commemorates the space
probes [11] that provided some of the first detailed images of the outer planets
of our solar system. Rocketeer Voyager takes advantage of a parallel platform
by processing concurrently a different snapshot on each CPU.

http://www.jpl.nasa.gov/calendar/voyager2.html


Like the interactive version of Rocketeer, Voyager is an OpenGL
application that will attempt to exploit whatever hardware graphics acceleration
is available. One could imagine a small linux cluster in which all of the nodes
have identical graphics cards and operate perfectly well without a display.
However, large clusters are rarely homogeneous, and the nodes may have
different graphics cards or none at all. This can make installing OpenGL and an
X server with GLX extensions very inconvenient. Moreover, efficient and
flawless linux graphics drivers are unavailable for many graphics cards. To
circumvent these problems, CSAR contracted with Xi Graphics, Inc. [12] to
produce a commercial quality X server that runs in a virtual frame buffer and
installs automatically across all nodes in a cluster.

Voyager takes as input a file specifying the camera position, a list of
graphics operations to perform, and a list of all HDF files to process. The first
two items are text files saved during an interactive session of Rocketeer. If the
HDF files reside on a distributed file system (e.g., separate hard drives on each
node of a cluster), each processor will make images from all HDF files on the
local disk that match an entry in the file list. If the HDF files reside on a shared
file system, an additional command line option is required to specify the number
of HDF files needed to produce each image. This allows Voyager to determine
which files each CPU should process. It is possible to use Voyager on a
distributed shared file system (e.g., 2 CPUs share a disk on each node) if the
HDF files are distributed among the nodes in the same manner as the MPI tasks
are started by the system. The images that are created are saved to disk rather
than displayed on a remote system.

Voyager first reads the list of HDF files to determine which files will
be processed by each CPU, with the aim of assigning equal numbers of
snapshots to each CPU. Next, the list of graphics operations is examined to
determine which variables to plot and whether the range of values for each color
scale is specified or is to be determined from the maximum and minimum values
contained within the entire set of HDF files. If necessary, each CPU extracts the
data ranges from its HDF files and the global max and min are determined.
Once these steps are complete, there is no more information to be exchanged
between CPUs, and the snapshots can be processed independently.

Voyager is potentially scalable to large numbers of processors,
provided the I/O system is scalable. A cluster that consists of single-CPU
nodes, each of which has its own local hard disk, should be capable of delivering
scalable I/O. On such a system, if the HDF files (and the images) are stored on
the local disks, Voyager should scale linearly, i.e., it should take N CPUs
virtually the same wall clock time to process N snapshots as it would take one
CPU to process a single snapshot. If the files are stored on a shared file system,
contention for I/O bandwidth could severely degrade scalability.

In practice, it often takes several attempts to produce a set of images
suitable for animation. One may have to experiment with the camera position,
isosurface values, data ranges, clipping planes, etc., in order to clearly show the
physically interesting features of a numerical solution. A parallel tool such as
Voyager makes this type of experimentation more practical. Consequently,

http://www.xig.com/


Voyager may be run several times in succession using the same HDF data files,
but slightly different camera position and graphics operations files.

3. Benchmark Results

Through a generous grant from Intel, the University of Illinois Computational
Science and Engineering program [13] operates a linux cluster called turing [14]
that consists of 208 two-processor Pentium (II or III) Xeon nodes (400 MHz to 1
GHz) connected with both 100 Mb Ethernet and Myrinet [15]. It also includes a
4-CPU (400 MHz Pentium II) front-end system, which doubles as a file server
that all nodes can access via 100 Mb Ethernet. Each node also has an 18 GB
internal hard disk, which jointly comprise a distributed shared file system.

The benchmark data set consists of 96 snapshots written by the gas
dynamics module of a Space Shuttle booster simulation. The images resemble
Figure 4, but do not show the stress in the propellant. Each HDF data file is
about 275 MB in size and consists of 287 structured mesh blocks with a total of
over 5 million grid points. The of list graphics operations to be applied to each
data file includes drawing several temperature isosurfaces and approximately
15,000 glyphs (cones) that represent the velocity field.

To benchmark Voyager, we placed the data files on the shared file
system as well as distributed a different snapshot to the local file system on each
of 96 nodes (all 1 GHz). We determined the wall clock time for the generation
of the images from start to finish using the shell’s built-in “time” command.
These benchmarks are quite unlike most graphics benchmarks, which
deliberately minimize the time spent on tasks other than rendering images from
data already stored in memory, in order to focus on the graphics system. Here
we are measuring the wall clock time for Voyager to make a specific set of
image files from a set of large HDF files.

On a single processor of our linux cluster, the images are generated
nearly as quickly as they are on a Sun Ultra 60 with the latest Expert3D graphics
card, despite the fact that the virtual frame buffer on turing cannot utilize
hardware graphics acceleration. The reason for this is that most of the run time
is spent reading the data in the HDF files.

http://www.cse.uiuc.edu/
http://turing.cse.uiuc.edu/
http://www.myrinet.com/


Figure 4: Gas velocity (cones), gas temperature (colored isosurfaces), and
propellant average stress (gray/purple colored surface) in the head
end of a Space Shuttle booster just after ignition. The igniter fits
into the left end of the cylindrical hole down the middle of a region
in which slots are cut along the axis of the rocket into the propellant
(11 point star). Hot gas, indicated by blue (cool) to green (warm) to
yellow (hot) has just begun to flow into the rocket chamber and
spread down into the slots. Gas is moving radially away from the
igniter inlet, but the flow has not yet reached the right side of the
frame, where the propellant has a simple cylindrical geometry and
the velocity cones are still pointing in random directions (very small
speeds).



Figure 5: Voyager run times for processing a number of snapshots equal to the
number of CPUs.
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Figure 5 gives the wall clock time in seconds for runs in which each
CPU processes 1 snapshot. The bars labeled “1st” for a given number of CPUs
give the time for the first trial, while the bars labeled “Best” give the best time
for several trials. The series labeled "Local" corresponds to the data file being
read from the hard disk on each node, the "Shared" series is for data files on the
shared file system, and the “2 Per Node” series is for data on the shared file
system and 2 processors active per node.

If the system were idle and the I/O system were perfectly scalable, all
of these runs would complete in less than 41 seconds, the time to process a
single snapshot on one CPU. When the data files are on the local disks and only
1 CPU per node is used, I/O contention should be minimal and scalability should
be excellent. Our timings show respectable scalability even for large numbers
of processors, especially when the run is repeated. The largest speedup we
obtained was 72.4 for 96 nodes, which is quite good in light of the facts that the
system was not in dedicated mode and all overhead is included in these run
times.

The timings in the "Shared" series are surprisingly competitive with
those in the "Local" series, which reflects the high bandwidth between the
shared file system and the nodes (100 Mb Ethernet plus a generous number of
switches). As one might expect, scalability suffers for larger numbers of nodes,
particularly on the first trial. However, in subsequent runs in which the same
nodes process the same data files again, the run times are much closer to those
for runs in which the data as on local disk. This is understandable if each node
retains some of its data in a local disk cache.

Since these trials were conducted in order of increasing processor
count, the run times for the first test on a new, larger number of processors
benefited from the fact that a series of runs on a subset of the processors was just
completed and therefore some of the data was already in cache. This situation
may occur in practice if one is making animation frames from an incomplete set
of snapshots produced by a run in progress. The user might generate an
animation with the existing snapshots at one point in time, and then return hours
later to make longer animations that include newer snapshots. In this case all of
the frames should be redone, because the data ranges could change when the
newer snapshots are added to the series.

The run times obtained when 2 CPUs per node are used to make images
are significantly longer than run times for 1 CPU per node, especially for large
numbers of processors. This is to be expected, since the two processors in a
node share I/O bandwidth when accessing files on the shared file system. The
two processors in a node also share I/O bandwidth to the local hard disk, but one
may expect reasonably good scalability for this situation, since the local disk I/O
bandwidth increases linearly with the number of processors. Note that for a
fixed number of nodes, allowing both CPUs in each node to process snapshots
reduces the run time compared to leaving one processor idle, at least after the
first trial. For example, processing 30 snapshots on 30 nodes using 1 processor
per node takes about 54 seconds, and therefore it should take about 108 seconds



for 60 snapshots. If we instead use 60 processors in 30 nodes to process 60
snapshots repeatedly, the run time is only 103 seconds.

It took about 3 hours to distribute the data files from the shared file
system to the local disks using a serial script running the scp command. If we
ran a parallel version of the script to distribute the data files, it would take at
least 100 seconds to complete, which could be more time than is saved by
running Voyager one time with the data files on local disks rather than on the
shared file system. It certainly would not pay to distribute the files if the user is
likely to perform multiple runs using the same data, since the data is
automatically cached to local disk by the system during the first run.

4. Discussion and Conclusions

Rocketeer Voyager is a powerful tool for producing images in parallel from a
series of snapshots output by a wide variety of time-dependent numerical
simulations. Voyager has nearly all the features of the interactive version of
Rocketeer, although it saves images to files rather than displaying them on a
monitor. A commercial quality X server that runs in a virtual frame buffer and
installs automatically on all nodes of a heterogeneous linux cluster was
developed by Xi Graphics, Inc. to allow such OpenGL-based applications to be
used in batch mode on systems without any graphics hardware.

For the set of large HDF data files we used to benchmark Voyager, the
run time for processing a set of snapshots is dominated by the time spent reading
the HDF data files. Even though all parallel overhead is included in the run
time, scalability is respectable for large numbers of processors, especially if the
data is on local disk, or if the data is on a shared file system and a run has
already been performed using the same data files (but perhaps a different camera
position or set of graphics operations). After the files have been read once,
some data remains in local disk caches, and therefore during subsequent runs
contention for I/O bandwidth to the shared file system is greatly reduced.

If the simulation is run on the same cluster to be used for visualization,
the data could be saved to local disk to make visualization more efficient. Note
that Voyager requires all of the blocks in a multiblock data set for a given
snapshot to reside on a file system accessible to the CPU responsible for
processing that snapshot. However, throughout the simulation, each processor
works on a portion of the mesh, and therefore if each processor writes its data to
local disk, the blocks for each snapshot will be distributed over separate local
file systems. Solutions to this problem include modifying the simulation to: 1)
write to a shared file system (or a parallel file system) at a cost of some
efficiency during the first run of Voyager, 2) pass as messages the data for each
snapshot to a single node at a cost of extra communication, or 3) use the
PANDA parallel I/O library [16], [17] to collect and combine on extra nodes the
data from the compute nodes and migrate it to other nodes that will do the
visualization. With this last option, it would be possible for the extra nodes to
migrate data from a simulation running on a remote supercomputer to a local
cluster for visualization, provided remote logins to individual nodes are allowed.

http://cdr.cs.uiuc.edu/panda/rocpanda


Writing and reading HDF version 4 files unfortunately takes many
times longer than the equivalent operations on binary files. We are considering
adding support in Rocketeer for HDF version 5 [18] files, as well as other data
formats.

Our future plans include the development of a client/server version of
Rocketeer. The server will run on parallel platforms including linux clusters,
while the client will run on desktop workstations and laptops. Our focus for the
client/server version is on utilizing a parallel server to speed up the generation of
individual images, rather than on processing multiple snapshots in parallel.
CPUs running the server will adopt the domain decomposition of the simulation
and process the mesh blocks in parallel. A subsequent serial step in the
visualization pipeline will merge the images and remove artifacts due to the
duplication of block boundaries. Final rendering will take place on the client,
where hardware graphics acceleration will further enhance performance.
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